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Propagation Mode and Scattering Loss of a Two-Dimensional
Dielectric Waveguide with Gradual Distribution

of Refractive Index

YASUHARU SUEMATSU, MEMBER, IEEE, AND KAZUHITO FURUYA

Abstract—An analytical discussion of the mode property and the
scattering loss of a two-dimensional dielectric waveguide with
gradual refractive-index distribution in the transverse direction is
presented. To describe scattering loss, a transverse correlation as
well as an axial correlation of the irregular variation of the refractive
index have been used. ‘

The field distribution, the group delay, and the maximum film
thickness of a single-mode waveguide scarcely depends on the
shape of the distribution. The maximum value of the film thickness in
the single-mode transmission region optimizes the scattering loss and
the energy confinement. The scattering loss of a waveguide with a
gradual index distribution is smaller than that of a three-layer wave-
guide when the transverse correlation is small, but it is not much
altered when the transverse correlation is large.

I. INTRODUCTION

IELECTRIC WAVEGUIDES are considered to

be very promising at optical frequencies [1].
Optical fibers [2], integrated optics [3], [4], and
other possibilities [5] are making use of this type of
guide. The properties of the dielectric waveguides have
been discussed mainly under the condition that the
dielectric constant or the refractive index changes
abruptly at the core boundary, except for the case of
lens-like media [6].

In actual cases, the distribution of refractive index
near the boundary of the guide is sometimes gradual
because of the diffusion mechanism of the constructing
materials. But the distribution of refractive index in
this case is sharp compared with that of the lens-like
medium.

In a dielectric waveguide, besides the propagation
constant, scattering loss that comes from the irregulari-
ties of the boundary is an important factor to character-
ize the guided properties. The field distributions and the
propagation constants in a cylindrical guide of a gradual
distribution of refractive index were treated in [7]. The
scattering loss from the one abrupt irregular boundary
was given in [8]-[10].

In this paper we present an analytical discussion of
the mode property and the scattering loss of a two-di-
mensional dielectric waveguide with a gradual distribu-
tion of refractive index. The distribution of refractive
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Fig. 1. Approximation with a staircase function. The waveguide
whose refractive index changes gradually is approximated by N-
step multilayer structure.

index has been approximated by a staircase function. A
transverse matrix representation has been introduced to
treat it. To describe scattering loss, a transverse corre-
lation as well as an axial correlation of the irregular
variation of the refractive index have been used.

II. CHARACTERISTIC-MODE ANALYSIS BY
MEANs oF F-MATRIX

It is assumed that the waveguide is a two-dimen-
sional structure, the refractive index is constant along
the z axis, and is distributed symmetrically along the
y axis with respect to y=0. The waveguide whose re-
fractive index changes gradually along the y axis is ap-
proximated by an N-step multilayer structure, as
shown in Fig. 1.

If the refractive index changes spatially, the gradi-
ents of the refractive index enter into the wave equa-
tions [11]. Instead of taking these gradients into ac-
count, we divide the space into (N +2) layers, and make
use of the boundary conditions at the N1 boundaries
to satisfy Maxwell's equations. In order to treat the TE
and TM modes in a similar form, the following nota-
tions are used.

E,
*= {ul
nH;
{—jnHz} {for TE wave} .
JE. 1~ for TM wave W
where 1= (~/i/e&)/m and n; is the refractive index at

the center of the guide. The upper line in the paren-
theses applies if TE wave is to be analyzed, while the
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lower line belongs to TM wave. In the 4th layer the
solution of Maxwell’s equations is represented by means
of the transverse F-matrix as follows.

(y) ®(y0) Vi S Yo = Yina
= F’L - %o ’ 2
[\If(y)] [Pl =y )][‘I/(yo)] ViZ2y =y @

where

Fo) =

COS ¥y

(—ki$o/v4) sin wy}
(vi/kags) sin vy

COS vy

v = klz(m/nx)z — B2
k2 = wlnileu

1 TE wave
= {(m/n1)2} ’ {TM Wave}

and B is the propagation constant along the z axis. The
modes of a symmetrical dielectric waveguide have defi-
nite parity, which means they are either even or odd
functions and therefore satisfy the following relations at
the center of the guide.

¥(0) = 0,
%(0) = 0,

for even modes

for odd modes. 3)

At boundaries between two adjoining layers, field com-
ponents parallel to the boundary surface, or perpendicu-
lar to the y axis, must be continuous because of the
boundary condition. Therefore, the followirls\g equation

represented by the product of matrices ]| must be

satisfied.

Lol=le olleoms] @
where

[ﬁ ﬁ] Eﬁw—di)]

and d; is the thickness of the 4th layer. The condition
for a guided mode is that the field decays exponentially
in the outermost layer, or the (N+1)th layer. There-
fore, yx41 is imaginary, and so the range of the propaga-
tion constant B of the guided mode is

E2(1 — 2A) < B2 < ky? (5)
where
A = (1% — nynga®)/21:2 >~ (01 — nyy1)/n1,
for (1 — nxy1) <K na.

And at y=yyq1 the field components must satis{y the
following equation

&(yNni1) _ kit v '
V(ywy)  (ywea/d)

(6)

From (3), (4), and (6) the determinative equation for
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the guided mode is
§n4aCik + Di(ynga/j) = 0,
Svadiks + Bi(ywya/j) = 0,

For the radiation modes the eigenvalue or the propaga-
tion constant § is continuous, and its range is given by

0 < B2 < k21 — 24). (8)

for even modes
for odd modes.  (7)

The set of radiation modes contains degenerated pairs;
that is, two modes belong to the same propagation con-
stant and are orthogonal to each other. The orthogonal-
ity is held between the transverse electric field and the
magnetic field, and the normalization constant is
selected as P=1/(wu) to simplify the analysis (Ap-
pendix II).

JII. ANALYSIS OF THE SCATTERING Lo0ss

The scattering loss caused by the deviated distribu-
tion of the refractive index or the imperfection of the
boundary is determined as the mode-conversion loss in
a manner similar to [8], using the characteristic modes
determined in Section II.

A. Mode Conversion Caused by a Deviated-Index Distri-
bution

The waveguide with a deviation in refractive index
is described by a refractive-index distribution

n*(y, 5) = n*(y) + n*(y, 2) ©)

where #¢(y) describes the ideal dielectric waveguide
whose modes were given in Section II, and the addi-
tional term 812 describes how the index deviates from
the perfect distribution. It is possible to express any
field distribution on the waveguide with the deviated
index distribution by the expansion

v

Z ¢a(2) ]q)n )

n=|

‘I’(y, ) =

+ 3 [ s8]0 dvv’ (10)

where “kets”|)represent characteristic modes of the
waveguide (Appendix I), and (#-+1) is the number of
guided modes. The summation sign in front of the inte-
gral indicates summation over degenerate modes, even,
and odd modes.

To obtain differential equations for the expansion
coefficients we substitute (10) into the perturbed wave
equation that contains the term &% Multiplying the
resulting equation by (Bm/n)(q)m[ 1/ or (B'/n)
(®(B)| (1/¢) from the left, and using the orthonormal-
ity relation (32) and the fact that |®,) and |®(8))
are the characteristic modes of the perfect guide, leads

to
kb | et B R S
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with
< on?
B | — | B,
{Fm(z)} (ka/n3)? {m} /
G(z; B) 20uP B on?

%)

d'YN_I_],.

" <<I>(B)
(o)

¢
<¢<ﬁ>1%’f o))

For the purpose of obtaining perturbation solutions
of (11), an integral form of this equation is useful. In
this form we can separate it into two parts, where one
is associated with the wave traveling in the positive z
direction and the other in the negative. Therefore, we
introduce the notation

en(2) = cnP(2) + cu(3)
g(z;8) = g (z;8) + g (3; 8)- (13)

The constant occurring in the integral form is deter-
mined from initial conditions (Appendix III).

In order to solve the integral equation we employ a
first-order perturbation method by using ¢.(0) instead
of ¢.(z), and g(0; B) instead of g(z; B) in the integrand
of the integral equation, And we use

Cm(o) = Oom
g(0;8) = 0.

Now solutions for ¢t (), ¢« (2), g (z; B), and
g(z; B) are obtained in first-order approximation
(Appendix III). Then the power loss AP of the incident
mode due to the mode conversion caused by the imper-
fect section, 0=<z=L, is given by

+ 2 [ 1)

(14)

AP/P = z eI+ 3 6o |2

n=1

+ 2 [ (swws ]

+ | 42038 [Ddywar- (15)

B. Statistical Treatment of Index Deviations

If a definite (deterministic) deviation of the index
distribution were given, the relative loss of a guide could
be calculated from (15). If certain statistical properties
of the deviation, such as the correlation lengths of the
fluctuation, are known, we can determine the average of
the relative loss taken over an ensemble of statistically
identical systems.

Since the refractive index changes gradually, two-
dimensional correlations between the deviation of the
index at two points are taken into account.
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The integration over y from — « to « defined by the
bracket (®|8n2/¢|®o) in (12) and (35) is replaced by the
summation over the multilayers, which is used in the
characteristic-mode analysis of the waveguide. For ex-
ample, from (12) or (35), F.(3) is

Bm(k1/n1)* Nil

By T B0y
2wuP Y oL

i (V1) i
+diexp {j(Bn — Bo)z}.

Then from (34) (using (16), for example) the ensemble
average of the square magnitudes of the mth forward-
traveling guided mode is

Folz) o~ —
(16)

{({en™(L)|?)

_ (k1/m1)*
= 16(qu)2f dzf ds’ eXp F(Bm — Bo)(z — Z)}

N+1 N+1

2 2 (ond@DonA(E))Bu(y:) Bu(ys)

= (N41) = (N41)

© Bo(y)o(y)didi/S ks, (Y= = — 30)- (17

The factor (6n:%(z)én;2(z")) represents the ensemble
average of the product of the dielectric-constant devia-
tion 6n? in the <th layer at 3=z by that in the jth layer
at z=z". We may assume that the index deviation 67?2
is caused by a local shift dy of the index distribution
along the v axis. Then the index deviation 6#% and the

local shift éy are related by
d

m? = — — (n?) 0.
dy y=y,

(18)

Using N layers, we divide the difference between the
dielectric constant of the center layer and that of the
outermost layer into N equal steps. Therefore,

. _ Gy G=23 N+1)
A
and
— @ (n?) o = (. (19)
From (18) and (19),
(on.2(z)on;2(2")) dud, = S N) (0y.()8y,(z)).  (20)

We assume the following form for the correlation
function

(69.()0y;(z)y = A%exp (— | y. — v,| /By

-exp (— [ g — z’| /B.). (21)

A, the rms deviation of the index distribution, is as-
sumed to be independent of y. And B,, B, are the corre-
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Fig.2. (a) Plus-type correlation. (b) Minus-type correlation. Under
the plus- (minus-) type correlation, the direction of the local shift
of the index distribution on one side is the same as (opposite to)
that on the other side.

lation length in the transverse direction and longitudi-
nal direction, respectively. The last exponential term in
(21) was adopted by Marcuse [8] for his analysis, which
contains no transverse correlation.

Substituting (20) and (21) into (17), integrating over
z and 2/, and assuming that L>>B,, we obtain

o

with

{B.(3F Bm)}2+1
(m # 0)

> = ALE*(24/N)?

my

1 N+1 N+1

2 2 [Bn(3)Bn(3) Bo(y0) Bo(y))

T MwwP)? S o
cexp (= | yi — v} / B/ Cics)
+ { = @n(y) Bu(—3,)20(3:) Ro(— )
rexp (—(y: + 9)/B)/ )} ]-

The first term in the bracket represents the contribution
to the mode coupling of the correlation between the
index deviations at two points of the dielectric wave-
guide, which are on the same side with respect to y =0.
The second term is the contribution of the correlation
between the index deviations at two points, which are
located on opposite sides with respect to ¥y =0. For the
sign of the second term in (22), we consider two cases,
the plus-type and the minus-type correlation. The plus
(minus) sign corresponds to the plus- (minus-) type
correlation. For the plus- (minus-) type correlation, the
direction of the local shift of the index distribution on
one side of the dielectric waveguide is the same as
(opposite to) that on the other side (Fig. 2).

The corresponding expressions for the other modes
are derived similarly.

Je=or 1)

= ALE,*(2A/N)?

m

(22)

z

{B.(8 F B)}2+ 1

S(). (23)
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Fig. 3. Gradual refractive-index distribution. The value of r is
smaller, the slope of the curve at y=b5 is steeper, but the area
under the curve is independent of 7.

S(8) is obtained by replacing ®, with ®(8) in Su,
see (22).

If we consider the index deviation 6#2 to be caused by
wall deviations, and assume deviations at two points to
be related by (21), we obtain the same results. However,
there is the difficulty that the wall deviation dy; or 4
cannot exceed the thickness d;.

The ensemble average of (15) is calculated from the
following equation, using (22) and (23).

@p/P) = ST + X (a0

+ X f(e@mm

+ {1¢90; BTIT>> dynit'. (24)
IV. NUMERICAL RESULTS
A. Gradual Refractive-Index Distribution

In order to investigate how the shape of refractive-
index distribution affects characteristic modes, propa-
gation constants, group velocities, the maximum film
thickness that provides single-mode transmission, and
the scattering loss caused by the deviation of the refrac-
tive-index distribution, we assume the refractive-index
distribution to be

A 1 b
n(y)/ny = 1— —exp<—> exp (— —), 0< I y| <bd
2 7 ry

A 1
1—A-I——exp<—>
2 7
(~m=)
P\ -/

n(y)/m =1—A4,

i

n(y)/m

b<|y| <2b

ly| >26 (25)

for small A. The parameter » determines the shape of the
distribution (Fig. 3). For a small value of 7, the slope of
the n—y curve at y=» is steep, and in the limit »—0 the
multilayer dielectric waveguide becomes a symmetric
three-layer waveguide.

For a constant value of 2b, the area between the n—y
curve and the line # =1—A is independent of the param-



528

o
W
T

1

o
S

o
-

MAGNETIC FIELD INTENSITY H,

M/ A

Fig. 4. Field distributions (A=0.01, 26=3.02\/%;, »=8). Solid
curve corresponds to a steep distribution (r=0.02) and dashed
curve to a gradual distribution ( =1.0).

g
(R0
L

\iﬁ—ﬂ.‘ T T T T T T

)
>
~

.
o
[
T
A

Normalized Difference between f3, and ki

0.5
Shape Foctor 2
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Fig. 6. Frequency characteristics of group velocities of fundamental
modes and their first derivatives (N =8, A=0.01).

eter 7. Therefore, 25 is the equivalent film thickness of
the waveguide with gradual index distribution.

B. Characteristic Modes, Propagation Counstants, and
Group Velocities

Figs. 4-6 show numerical evaluations for field distri-
butions, propagation constants, and group velocities of
fundamental TM modes.

Fig. 4 applies to waveguides with A=0.01, 26 =3.02
-(\/n1), and N =8. It is shown that the more gradual the
index distribution becomes, the wider the mode be-
comes. But the change is not so remarkable. The spot
size, i.e., the width of the field distribution where the
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Fig. 7. The maximum film thickness of a single-mode waveguide
becomes small as # becomes large (IV=8).

intensity is smaller than that at the center by exp
(—1/2), corresponding to #=0.02, is 2.03 (A\/n;), and
the spot size corresponding to #=1.0 is 2.24 (A\/71). So
the change in the spot size due to the change in 7 is as
small as 10 percent.

As Fig. 5 shows, the propagation constants of the
fundamental modes become small as the distributions
become gradual.

Fig. 6 shows frequency characteristics of group
velocities of fundamental modes and their first deriva-
tives. But for single-mode transmission, there is little
change due to the change of 7.

C. The Maximum Film Thickness of Single-Mode
Waveguides

For many applications, single-mode dielectric wave-
guides may be of great interest, and, furthermore, for
the reason mentioned in part D, the maximum value of
the film thickness that provides single-mode transmis-
sion is important.

In the case of the dielectric waveguide with abrupt
change in the refractive-index distribution at y=]bl,
the maximum film thickness is

26 = 1/(24/28)(\/n1).

i

And,

2bmax = M (N\/11)/(2+/ 24)

where 2bm.x is the maximum equivalent film thickness
of single-mode waveguide for the multilayer waveguide.
The value of M depends on the value of 7, as shown in
Fig. 7. M decreases with increasing 7.

(26)

D. Field Distributions of Waveguides with Function of
Film Thickness

As the film thickness or the width of the core of the
symmetric three-layer waveguide changes, the field
distribution of the fundamental mode changes, as shown
in Fig. 8.

In the case of 26 =0, the wave is not confined at all.
The spot size of the fundamental mode decreases with
increasing 2b. It becomes minimum at some value of
2b; for example, at 26 =2(\/#1) for A=0.01.
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Fig. 8. Field distributions corresponding to various film thickness
and the field intensity at the boundary versus film thickness 2b
(N=1, A=0.01).
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Fig. 9. Scattering loss versus film thickness. The peak shifts to the
right for the plus-type correlation and to the left for the minus-
type correlation (N=1, A=0.01, B,=10\/n,1).

The value of the field intensity at the boundary,
which has an intimate relation to the scattering loss
caused by wall imperfections, depends on 25, as shown
in Fig. 8.

E. Scattering Loss versus Film Thickness

Fig. 9 applies to a waveguide with B, =10(\/#n.). This
value provides the maximum scattering loss for A=0.01,
as will be shown in part F.

In the case where there is no correlation between the
deviations on opposite sides, the scattering loss peaks
at 2b=2b,; for example, 2b,=0.7 (\/n1) for A=0.01. If
2b <2b,, the smaller 20 becomes the smaller the loss
becomes (Fig. 9), but the confining character of the
guide also becomes weaker (Fig. 8). However, if 26 > 2b,,
the loss decreases monotonically as 2b increases; but at
2b =2buax, the mode coupling between the fundamental
mode and the second guided mode starts.

Taking the transverse correlation into account, the
peak 20, shifts to the right for the plus-type correlation
and to the left for the minus-type correlation.

These phenomena are interpreted with the help of
(22) and (24). In (24), the third term contributes the
most. Therefore,

107 T T T T T T T T T T

7=002
By=100 A/n,

r=10
By=100%/ny

7=10
By=0 {¥n,

Normalized Scattering Loss (4p/gfa2L) (Mny)®

oS L N S L L b 1 L L

| I

1 10
Longitudinat Correlation Length — Bz("/a)

Fig. 10. Scattering loss versus correlation length B,. The loss peaks
at around B,=10\/n; (N=8, A=0.01, 2b = 2bpmax~>3.5\/n1).

B.
(B8 — B) ] + 1
- [2202(8) { (2.2(8) + a2(8))
+ (—®.2(b) + ®.2(0)) exp (—2b/B,)}]  (27)

where &, and &, indicate the even mode and the odd
mode, respectively, and the plus sign and minus sign in
front of the second term corresponds to the plus correla-
tion and minus correlation, respectively. As long as B,
is not so small, the integral in (27) contributes to the
loss only at 3'~1—A due to the first factor. For 2b
smaller than a certain value, ®,2(6) >®,2(b), while for
2b larger than a certain value, ®,2(d) <®,;2(b). Thus the
sign of the correlation term in (27) changes at a certain
value of 26 and the peak of the curve shifts.

It is also clear from (27) that if the transverse corre-
lation length B, is long enough that exp (—25/B,)~1,
and in the case of the plus-type correlation ®.2(b) is
cancelled out, the fundamental mode does not couple
with even radiation modes but couples only with odd
radiation modes. The opposite is true for minus-type
correlation.

In order to realize dielectric waveguides with low
scattering loss caused by wall imperfections, the value
of 2b should be optimized. The optimum value of 25 is
a little smaller than 2b4.s. For small values of 25, the
spot size is large so that the loss caused by bends of the
guide is also large.

d7N+{

<AP\

F. Scattering Loss versus Correlation Length B,, B,

Fig. 10 applies to a waveguide with A=0.01, 2&
=2bmax, V=28 as an example. According to this figure,
the loss peaks at around B, =10(\/#n1).

Fig. 11 applies to a waveguide with A=0.01, 25
= 2bmax, N=8, B,=10(\/n1) as an example. The loss
increases monotonically with the transverse correlation
length B,.
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Fig. 11, Scattering loss versus correlation length B,. The loss in-
creases monotonously with the transverse correlation length
B,(N=8, A=0.01, 2b =2bmex, B.=100/n1).
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Fig. 12. Scattering loss versus shape factor 7. The loss reduction due
to the gradual index distribution is appreciable when By is small
(B, =0.1\/n,, solid line), but is not so appreciable when B, is
large (By=100A/n;, dashed line) (N=8, A=0.01, 25 = 2bmex).

G. Scattering Loss versus Shape Factor v

The scattering loss caused by the deviation from the
perfect index distribution decreases as the value of 7
increases, as shown in Fig. 12. The loss reduction due
to the gradual index distribution is appreciable only
when B, is small. This effect is interpreted qualitatively
with the help of (22) and (24). If B, is not too small, the
term

B,
{B.(8o — 8)}? + 1
occurring in (22) gives contributions to the integral of
(24) only in the neighborhood of 8’=1—A. For radiation
modes with propagation constants §'~~1-—A, the field
intensity varies slowly along the v axis, which is also

true for the fundamental mode. We assume that the
value of 25 is small so that

Bo(F o) = Bo(Eys) = -« ~ Bo(F ynpr) = Po(b)
B(Ly2;8) = B(Fy5;8) = - - - = B(Lyw41;6)
~ &(+5;8).

(28)
From (23), using (28) and {i==1, and omitting the term
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of the correlation between the deviations on opposite
sides

e« (3)

2 N+1 N+1

> § exp (— | v — 9;|/B.)

=2

= F(N; B,). (29)

If NV is so small that
min (| 9 — yea|) > By, (G =2,3,---,N) (30)

then

2 N+1 N+1

As far as (30) holds, increasing N, the loss decreases in
inverse proportion to N. If N becomes so large that

N+1

Z exp (— | v — vi| /B)) = Nfu(By, ynvs1 — 92) >1

=2

then fi(By, Yn11—7Y2) increases monotonically with B,
and decreases with (yxy.1—9¥2). With further approxima-
tion that fi(By, Y¥+1—7%2) is independent of ¢, we obtain
the following relation

F(N; By) = f(By, yn41 — ¥2)- (31)

Equation (31) shows that the scattering loss of an
N-layer dielectric waveguide converges with larger N
to a value that depends on the transverse correlation
length B, and (yy41—%2), and therefore on the shape
parameter 7.

We evaluated the loss for waveguides with N=§,
N =20, and N =60, but there is not an appreciable differ-
ence among them.

In the case of B,=0.1(\/n,), the loss corresponding
to r=1 is smaller than that corresponding to r=0 by
the factor 1/8.

V. CONCLUSION

We have analyzed the properties of a dielectric wave-
guide with gradual refractive-index distribution in
transverse direction, using the transverse F-matrix.

The field distribution of a fundamental mode, group
delay, and the maximum film thickness of a single-mode
waveguide scarcely depend on the shape of the index
distribution.

Taking the transverse, as well as the longitudinal,
correlation length into account, we have calculated the
scattering loss caused by deviations of the index distri-
bution.

The maximum value of the film thickness in the
single-mode transmission region optimizes the scattering
loss and the energy confinement. The loss of a waveguide
with a gradual index distribution and transverse corre-
lation length B, =0.1(\/#,) is only 1/8 of the loss of a
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three-layer waveguide. However, in the case of B,
=100(\/#n1), there is no significant difference between
the former and the latter.

APPENDIX I
“BRACKET” NOTATION

For simplicity of calculation, “bra” and “ket” nota-
tions are used for the characteristic modes of dielectric
waveguide. Definitions are as follows.

| @) = ®u(y) exp (—jBa2)
| #(8)) = ®(y; 6) exp (—jB2)
(@] = (®(9) exp (—jBaz))*
(@) | = (®(y;B) exp (—jB2))*

@] 4] 20) = [ 220) 4803 8) dy exp (5. — 99
where A is an operater or a function.

ArpPENDIX I1
NORMALIZATION

The normalization is defined using “bracket” notation
(Appendix I).

AL
am

Poia = ) = ; #<‘1>(B)‘ = ‘4’(6 ",

5,

Ps,., , for guided modes

for radiation modes. (32)

Modes are normalized by following normalization
constants

C [6" {%{14»2( )<d+ 2 d)
n = —-—sin
2wulP $i . 2y, Y

ki? 1
+ fi— ¥3(y.) (di — -——sin 2%‘(%)
712 27;

k
+ 12 ®(y,)¥(y,)(cos 2vid; — 1)}
¥.

]' ~-1/2
- ———

’YN+1§'N+1

el 1
c(g) = B (yxs) +
® [ZW g {ml (yxss)

for radiation modes.

for guided modes

—1/2
k1% N1 ‘I’z(yzv+1)}:| ,

’YN+1

(33)
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ArprPENDIX III
ExpansioN COEFFICIENTS

The integration constant is determined from the
initial conditions that only the lowest order guided
mode is incident on imperfect waveguide at 2=0, and
that at z=L the waveguide is connected to a perfect
guide so that at z=L there are no waves traveling in
negative gz direction. Then integral equations are

st =l )
{gi’i};f?)} w- % zLeXp (—28u) {GIZ;)} "

-exp (27B2).
In first-order perturbation the integrand in (34)
approximated by

(m % 0)

(34)

on?
Fal _ Ba/n)? (ol ‘b°>
{ m} ~ /1 33
G(B) 2wu P / (3 )l cI:
"/
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