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Propagation Mode and Scatterin~ Loss of a Two-Dimensional

Dielectric Waveguide with Gradual Distribution

of Refractive Index

YASUHARU SUEMATSU, MEMBER, IEEE, AND KAZUHITO FURUYA

Abstract—An analytical discussion of the mode property and the

scattering loss of a two-dimensional dielectric waveguide with

gradual refractive-index distribution in the transverse diiection is

presented. To describe scattering loss, a transverse correlation as

well as an axial correlation of the irregular variation of the refractive

index have been used.

The field dktribution, the group delay, and the maximum fdm

thickness of a single-mode waveguide scarcely depends on the

shape of the distribution. The maximum value of the fihn thickness in

the single-mode transmission region optimizes the scattering loss and

the energy confinement. The scattering loss of a waveguide with a

gradual index dk.tribution is smaller than that of a three-layer wave-

guide when the transverse correlation is small, but it is not much

altered when the transverse correlation is large.

1. INTRODUCTION

D

I ELECTRIC WAVEGUIDES are considered to

be very promising at optical frequencies [1].

Optical fibers [2], integrated optics [3], [4], and

other possibilities [5] are making use of this type of

guide. The properties of the dielectric waveguides have

been discussed mainly under the condition that the

dielectric constant or the refractive index changes

abruptly at the core boundary, except for the case of

lens-like media [6].

In actual cases, the distribution of refractive index

near the boundary of the guide is sometimes gradual

because of the diffusion mechanism of the constructing

materials. But the distribution of refractive index in

this case is sharp compared with that of the lens-like

medium.

In a dielectric waveguide, besides the propagation

constant, scattering 10SS that comes from the irregulari-

ties of the boundary is an important factor to character-

ize the guided properties. The field distributions and the

propagation constants in a cylindrical guide of a gradual

distribution of refractive index were treated in [7]. The

scattering loss from the one abrupt irregular boundary

was given in [8 ]– [10 ].

In this paper we present an analytical discussion of

the mode property and the scattering loss of a two-di-

mensional dielectric waveguide with a gradual distribu-

tion of refractive index. The distribution of refractive
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Fig. 1. Approximation with a staircase function. The waveguide
whose refractive index changes gradually is approximated by N-
step multilayer structure.

index has been approximated by a staircase function. A

transverse matrix representation has been introduced to

treat it. To describe scattering loss, a transverse corre-

lation as well as an axial correlation of the irregular

variation of the refractive index have been used.

II. CHARACTERISTIC-MODE ANALYSIS BY

MEANS OF F-MATRIX

It is assumed that the waveguide is a two-dimen-

sional structure, the refractive index is constant along

the z axis, and is distributed symmetrically along the

y axis with respect to y = O. The waveguide whose re-

fractive index changes gradually along the y axis is ap-

proximated by an N-step multilayer structure, as

shown in Fig. 1.

If the refractive index changes spatially, the gradi-

ents of the refractive index enter into the wave equa-

tions [11 ]. Instead of taking these gradients into ac-

count, we divide the space into (N+ 2) layers, and make

use of the boundary conditions at the N+ 1 boundaries

to satisfy Maxwell’s equations. In order to treat the TE

and TM modes in a similar form, the following nota-

tions are used.

Ez
d?=

{}?@z

“’ {T} {:::2 ‘1)
where q = (v’p/eJ /m and m is the refractive index at

the center of the guide. The upper line in the paren-

theses applies if TE wave is to be analyzed, while the
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lower line belongs to TM wave. In the ith layer the the guided mode is

solution of Maxwell’s equations is represented by means

of the transverse F-matrix as follows.
.?iv+lc,kl + Dt(7N+1/j) = O, for even modes

~N+l~ th + &(?’N+l/j) = O, for odd modes. (7)

o(y)

[1

@(yJ

1
y; s yo s yi+l

= [Fz(y - YO)IIT(YO) ‘ y, s y s Y~+l (2) For the radiation modes the eigenvalue or the propaga-
V(y)

tion constant /3 is continuous, and its range is given by

where O < ~’ < kl’(l – 2A). (8)

(–kl{,/7J sin -fty

1

The set of radiation modes contains degenerated pairs;
[~4Y)l = [(7,/;;,)7:: ‘yiy

COSyiy that is, two modes belong to the same propagation con-

stant and are orthogonal to each other. The orthogonal-
Y,z = k12(n,/n1)2 — D2

k12 = CO2n12W

ity is held between the transverse electric field and the

magnetic field, and the normalization constant is

‘i= {J%l,,} {%:}

selected as P = I/(tip) to simplify the analysis (Ap-

pendix 11),

and @ is the propagation constant along the z axis. The
111. ANALYSIS OF THE SCATTERING Loss

modes of a symmetrical dielectric waveguide have defi- The scattering loss caused by the deviated distribu-

nite parity, which means they are either even or odd tion of the refractive index or the imperfection of the

functions and therefore satisfy the following relations at boundary is determined as the mode-conversion loss in

the center of the guide. a manner similar to [8], using the characteristic modes

determined in Section II.
Xl?(o) = o, for even modes

Q(o)= o, for odd modes. (3) A. iWode Conversion Caused by a Deviated-Index Distri-

bution

At boundaries between two adjoining layers, field com- The waveguide with a deviation in refractive index
ponents parallel to the boundary surface, or perpendicu-

lar to the y axis, must be continuous because of the
is described by a refractive-index distribution

boundary condition. Therefore, the following equation ?P(y, z) = not(y) + a?z’t(y, z) (9)

represented by the product of matrices ~ must be

satisfied.
where no(y) describes the ideal dielectric waveguide

whose modes were given in Section II, and the addi-

[:8= K ::1[2:1 ‘4) ‘he perfect ‘distribution lt ‘s possible ‘o ‘Xpress any

tional term &z2 describes how the index deviates from

field distribution on the waveguide with the deviated

where index distribution by the expansion

and di is the thickness of the ith layer. The condition

for a guided mode is that the field decays exponentially

@(y, z) = ~ 6.(2) /%)
n=o

+ ~ ( ~(z; @) I@@’) ) dl’N+l’ (lo)
J

in the outermost layer, or the (N+ 1) th layer. There-

fore, 7N+I is imaginary, and so the range of the propaga-
where “kets” I )represent characteristic modes of the

tion constant b of the guided mode is
waveguide (Appendix I), and (V+ 1) is the number of

guided modes. The summation sign in front of the inte-

klz(l – 2A) <82< klz (5)

where

A = (ti12 — %V+12)/27412 ~ (?L1 – fiN+l)/?@

for (721 – n~+I) <<721.

And at y = YN+l the field components must satisfy the

following equation

@(yN+l) klfiv+].—. .
~(yN+l) (%V+l/j)

(6)

gral indicates summation over degenerate modes, even,

and odd modes.

To obtain differential equations for the expansion

coefficients we substitute (10) into the perturbed wave

equation that contains the term &z2. Multiplying the

resulting equation by (&Jq)(@~l (1/~) or (@/v)

(@(@’) [ (l/-(_) from the left, and using the orthonormal-

ity relation (32) and the fact that 10n) and I @(@)

are the characteristic modes of the perfect guide, leads

to

[2-2’$}:1{;9} = {$;) ’11)From (3), (4), and (6) the determinative equation for
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with

For the purpose of obtaining perturbation solutions

of (11), an integral form of this equation is useful. In

this form we can separate it into two parts, where one

is associated with the wave traveling in the positive z

direction and the other in the negative. Therefore, we

introduce the notation

cm(z) = cm(+)(z) + cm(–)(z)

g(z; p) = g(+)(z; f?) + g+)(z; ~). (13)

The constant occurring in the integral form is deter-

mined from initial conditions (Appendix III).

In order to solve the integral equation we employ a

first-order perturbation method by using c~(0) instead

of cm(z), and g(O; ~) instead of g(z; f?) in the integrand

of the integral equation. And we use

cm(o) = h)m

g(o; p) = o. (14)

Now solutions for cm(+) (z), cm(-) (z), g(+) (z; ~), and

g(–) (z; (3) are obtained in first-order approximation

(Appendix III). Then the power loss AP of the incident

mode due to the mode conversion caused by the imper-

fect section, Os zs L, is given by

AP/P = ~ I C.(+)
n=l

+EJ(

+ [ g(-)(o

L) 1’+ 5 [c.(-)(o) ]’
‘n=l

g(+)(L; d’) /’

B’) ]2)@v+l’. (15)

B. Statistical Treatment of Index Deviations

If a definite (deterministic) deviation of the index

distribution were given, the relative loss of a guide could

be calculated from (15). If certain statistical properties

of the deviation, such as the correlation lengths of the

fluctuation, are known, we can determine the average of

the relative loss taken over an ensemble of statistically

identical systems.

Since the refractive index changes gradually, two-

dimensional correlations between the deviation of the

index at two points are taken into account.

The integration over y from – w to ~ defined by the

bracket (~\ &z2/~ I *o) in (12) and (35) is replaced by the

summation over the multilayers, which is used in the

characteristic-mode analysis of the waveguide. For ex-

ample, from (12) or (35), F~(z) is

F.(z) c= – @“@&)2‘y @.(y,) ; @o(y,)
‘i=- (N+l ) %

.di exp fj(f?~ – f?Jz}. (16)

Then from (34) (using (16), for example) the ensemble

average of the square magnitudes of the mth forward-

traveling guided mode is

([ Cm(+)(q \‘)

(k,/tiJ’ L dz ~—— — Ss dz’ exp {j(~~ – ,80) (z – z’) ]
16(w@) 2 0 0

N+ 1 N+ 1

“z ~ (ani’(z)an,’(z’) )@m(yi)@m(y,)

;-(N+l) j=-(N+l)

“ @o(y,)@o(yJ&iJ(iti, (Y-t = – Yi). (17)

The factor (iki’(z) thzjz(z’) ) represents the ensemble

average of the product of the dielectric-constant devia-

tion 6n2 in the ith layer at z = z by that in the jth layer

at z =2’. We may assume that the index deviation &z2

is caused by a local shift ~y of the index distribution

along the y axis. Then the index deviation &t2 and the

local shift 13y are related by

a?’,z = – ~ (?’2’) 13yi.
dy

(18)
!I=!J,

Using N layers, we divide the difference between the

dielectric constant of the center layer and that of the

outermost layer into N equal steps. Therefore,

– ; ($’29 = (2::’2, (i=2,3, . . .. N+l)

IJ+i %

and

:Y(72’) = o.—_ (19)
U=u1

From (18) and (19),

(4 A2)n14
@?’L,2(z)&4j2(Z’) ) d,d, = y @yt(Z)6y,(Z’) ) . (20)

We assume the following form for the correlation

function

(f3yt(z)f3yj(2’)) = A’ exp (– I y, – y, I /BU)

.exp (– I z – z’ I /B.). (21)

A, the rms deviation of the index distribution, is as-

sumed to be independent of y. And Bu, B= are the corre-
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(d

(b)

Fig. 2. (a) Plus-type ca,rrelation. (b) Minus-type correlation. Under
the plus- (minus-) type correlation?, the direction of the local shift
of the index distribution on one side is the same as (opposite to)
that on the other side.

Iation length in the transverse direction and longitudi-

nal direction, respectively. The last exponential term in

(21) was adopted by Marcuse [8] for his analysis, which

contains no transverse correlation.

Substituting (20) and (21) into (17), integrating over

z and z’, and assuming that L>>B., we obtain

(l’m(*’ {:}’ ~= A2Lk’4(2A)N)2@&I$)}2+lsm)
(m # O)

with

1 N+l N+l

s. = z x [@m(Yi)@m(Yj)@o(yi) @o(yj)
4(o@) 2 ‘i=z j=,

. exp (– I yi – yj I /Bv)/(~J~)

* { – %(yi)%(- y,)@o(yi)@o(– Yi)

“ exp (– (y;+ yJ/Bu)/(~JJ } 1. (22)

The first term in the bracket represents the contribution

to the mode coupling of the correlation between the

index deviations at two points of the dielectric wave-

guide, which are on the same side with respect to y = O.

The second term is the contribution of the correlation

between the index deviations at two points, which are

located on opposite sides with respect to y = O. For the

sign of the second term in (22), we consider two cases,

the plus-type and the minus-type correlation. The plus

(minus) sign corresponds to the plus- (minus-) type

correlation. For the plus- (minus-) type correlation, the

direction of the local shift of the index distribution on

one side of the dielectric waveguide is the same as

(opposite to) that on the other side (Fig. 2).

The corresponding expressions for the other modes

are derived similarly.

(lg{K};B)12)

~+ 1

>

T!EI
r= 0.02

?3
~ 033

1.0
5
g 1-4

2b.
3
s
~
z 1-A

o b 2b

Y-AXIS

Fig. 3. Gradual refractive-index distribution. The value of r is
smaller, the slope of the curve at y = b is steeper, but the area

under the curve is independent of r.

S(6) is obtained by replacing ~~ with @(P) in S%,

see (22).

If we consider the index deviation &z2 to be caused by

wall deviations, and assume deviations at two points to

be related by (21), we obtain the same results. However,

there is the difficulty that the wall deviation ~yi m- A

cannot exceed the thickness d~.

The ensemble average of (15) is calculated from the

following equation, using (22) and (23).

(AP/@ = i m+y~~m+ i (1C.(-)(0) 12,
n= 1 7L=0

)——+(1g(–)(o; ~’) ]2, hN+l’. (24)

IV. NUMERICAL RESULTS

A. Gradual Refractive-Index Distribution

In order to investigate how the shape of refractive-

index distribution affects characteristic modes, propa-

gation constants, group velocities, the maximum film

thickness that provides single-mode transmission, and

the scattering loss caused by the deviation of the refrac-

tive-index distribution, we assume the refractive-index

distribution to be

A C)ex+;)‘<’y’s”n(y)/tzI = 1 — ~ exp

A 1

()
n(y)/nI = 1 — A + ;exp –

r

(

b
. exp —

)r(2b – y) ‘
b</ylc:2b

n(y)/nI = 1 — A, Iyl >2b (25)

for small A. The parameter r determines the shape of the

distribution (Fig. 3). For a small value of r, the slope of

the n–y curve at y = b is steep, and in the limit r+) the

multilayer dielectric waveguide becomes a symmetric

three-layer waveguide.

For a constant value of 2b, the area between the n–y

curve and the line n = 1 —A is independent of the param-
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Fig. 4. Field distributions (A= O.O1! 2b=3.02X/n,, n=8). Solid
curve corresponds to a steep distribution (r= O.02) and dashed
curve toagradual distribution (fl=l.0).
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Fig.5. Propagation constants of fundamental modes become

small asdistributions become gradual (N=8).
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Fig. 6.

eter Y.

Frequency characteristics of group velocities of fundamental
modes and their first derivatives (N=8, A= O.01).

Therefore, 2b is the equivalent film thickness of

the waveguide with gradual index distribution.

B. Characteristic Modes, Pro~agation Constants, and

Group Velocities

Figs. 4–6 show numerical evaluations for field distri-

butions, propagation constants, and group velocities of

fundamental TM modes.

Fig. 4 applies to waveguides with A =0.01, 2b = 3.02

. (A/nJ, and N= 8. It is shown that the more gradual the

index distribution becomes, the wider the mode be-

comes. But the change is not so remarkable. The spot

size, i.e., the width of the field distribution where the

E+
~

g
~,, <,,,,

080
,,j

o 05 1.0
ShW FOctor r

Fig. 7. The maximum film thickness of a single-mode waveguide
becomes small as r becomes large (N= 8).

intensity is smaller than that at the center by exp

(– 1/2), corresponding to r= 0.02, is 2.03 (X/@, and

the spot size corresponding to r = 1.0 is 2.24 (X/nl). So

the change in the spot size due to the change in r is as

small as 10 percent.

As Fig. 5 shows, the propagation constants of the

fundamental modes become small as the distributions

become gradual.

Fig. 6 shows frequency characteristics of group

velocities of fundamental modes and their first deriva-

tives. But for single-mode transmission, there is little

change due to the change of r.

C. The Maximum Film Thickness of Single- illode

Waveguides

For many applications, single-mode dielectric wave-

guides may be of great interest, and, furthermore, for

the reason mentioned in part D, the maximum value of

the film thickness that provides single-mode transmis-

sion is important.

In the case of the dielectric waveguide with abrupt

change in the refractive-index distribution at y = I b 1,

the maximum film thickness is

2b = l/(2< 2A)(A/wJ.

And,

2b~,x = M(A/n,)/(2~2A) (26)

where Zbmax k the maximum equivalent film thickness

of single-mode waveguide for the multilayer waveguide.

The value of .&f depends on the value of r, as shown in

Fig. 7. ill decreases with increasing Y.

D. Field Distributions of Waveguides with Function of

Film Thickness

As the film thickness or the width of the core of the

symmetric three-layer waveguide changes, the field

distribution of the fundamental mode changes, as shown

in Fig. 8.

In the case of 2b = O, the wave is not confined at all.

The spot size of the fundamental mode decreases with

increasing 2b. It becomes minimum at some value of

2b; for example, at 2b =2@/nJ for A =0.01.
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Fig. 8. Field distributions corresponding to various film thickness
and the field intensity at the boundary versus film thickness 2b
(iV=l, A= O.01).
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Fig. 9. Scattering loss versus film thickness. The peak shifts to the
right for the plus-type correlation and to the left for the minu~
type correlation (N= 1, A = 0.01, B.= 10k/nJ.

The value of the field intensity at the boundary,

which has an intimate relation to the scattering loss

caused by wall imperfections, depends on 2b, as shown

in Fig. 8.

E. Scattering Loss versus Film Thickness

Fig. 9 applies to a waveguide with B,= 10(A/nJ. This

value provides the maximum scattering loss for A = 0.01,

as will be shown in part F.

In the case where there is no correlation between the

deviations on opposite sides, the scattering loss peaks

at 2b =2bp; for example, 2bP =0.7 (X/nJ for A =0.01. If

2b < 26P, the smaller 2b becomes the smaller the loss

becomes (Fig. 9), but the confining character of the

guide also becomes weaker (Fig. 8). However, if 2b > 2b.,

the loss decreases monotonically as 2b increases; but at

2b = 2brna., the mode coupling between the fundamental

mode and the second guided mode starts.

Taking the transverse correlation into account, the

peak 2bP shifts to the right for the plus-type correlation

and to the left for the minus-type correlation.

These phenomena are interpreted with the help of

(22) and (24). In (24), the third term contributes the

most. Therefore,

,.-, 1 , #

-so J,.-, 1 10 103
Lonq(tudinol Cwrdot,on length Bzlnl!

Fig. 10. Scattering loss versus correlation length Bz. The loss peaks
at around B.= 10k/m (N= 8, A =0.01, 2b = 2b~axcx3.5h/nJ.

. [2@02(b) ~ (@.’(b) + @d’(b))

+ (– @,’(b) + @d’(b)) exp (–2b/BV) ] ] (27)

where @~ and @d indicate the even mode and the odd

mode, respectively, and the plus sign and minus sign in

front of the second term corresponds to the plus correla-

tion and minus correlation, respectively. As long as B.

is not so small, the integral in (27) contributes to the

loss only at ~’sl –A due to the first factor. For 2b

smaller than a certain value, @e’(b) >Qd’(b), while for

2b larger than a certain value, @,2(d) <@~f(b). Thus the

sign of the correlation term in (27) changes at a certain

value of 2b and the peak of the curve shifts.

It is also clear from (27) that if the transverse corre-

lation length Bv is long enough that exp (– 2b/Bv)sl,

and in the case of the plus-type correlation @,2(lI) is

cancelled out, the fundamental mode does not couple

with even radiation modes but couples only with odd

radiation modes. The opposite is true for minus-type

correlation.

In order to realize dielectric waveguides with low

scattering loss caused by wall imperfections, the value

of 2b should be optimized. The optimum value of 2b is

a little smaller than 2b~ax. For small values of 2b, the

spot size is large so that the loss caused by bends of the

guide is also large.

F. Scattering Loss versus Correlation Lengtk B., BU

Fig. 10 applies to a waveguide with A =0.01, 2b

= 2b~.X, N= 8 as an example. According to this figure,

the loss peaks at around B.= 10 (X/nl).

Fig. 11 applies to a waveguide with A = 0.01, 2b

= 2b~ax, N= 8, Bs = 10(X/nJ as an example. The loss

increases monotonically with the transverse correlation

length B..
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Fig. 11. Scattering loss versus correlation length B.. The loss in-
creases monotonously with the transverse correlation length
BV(N=8, A= O.01, 2b =2 bum B.= lWn,).

I&J
-----::’:::,,_____

10
. ------- L::___

A=OQI
005
010

01 1 I
o 05 Lo

Shop Factor ?

Fig. 12. Scattering loss versus shape factor f. The loss reduction due
to the gradual index distribution is appreciable when Bv is small
(Bv = O. lX/nl, solid line), but is not so appreciable when Bv is
large (BU = 100x/m, dashed line) (N= 8, A = 0.01, 2b = 2&=).

G. Scattering Loss versus Shape Factor r

The scattering loss caused by the deviation from the

perfect index distribution decreases as the value of r

increases, as shown in Fig. 12. The loss reduction due

to the gradual index distribution is appreciable only

when BU is small. This effect is interpreted qualitatively

with the help of (22) and (24). If Ba is not too small, the

term

B,

occurring in (22) gives contributions to the integral of

(24) only in the neighborhood of P’ = 1 –A. For radiation

modes with propagation constants P’N1 —A, the field

intensity varies slowly along the y axis, which is also

true for the fundamental mode. We assume that the

value of 2b is small so that

@o(*Y2) = @o(*y3) = “ . . = @O(~y~+l) = @o(b)

@(*y2; p’) c% @(*ya; Q’) = “ “ “ =@(+yN+l; &)

CM ~(~b;~’). (28)

From (23), using (28) and ~i~l, and omitting the term

of the correlation between the deviations on opposite

sides

1 2 N+l N+l

()

(lag\’) @ –~ ~ ~ exp (- I Yi - Yjl/Bu)

= F(N; BV). (29)

If N is so small that

min ( I y{ — Yi+l ) >> Bv, (i=2,3, . . ..N) (30)

then

As far as (30) holds, increasing N, the loss decreases in

inverse proportion to N. If N becomes so large that

N+ 1

~ exp (– \ yi – yj I /BU) = Nf,(BU, yN+~ – yz) >>1
j=z

then fi(B., yN+I – yz) increases monotonically with B,,

and decreases with (yN+l — YZ). With further approxima-

tion that fi(Bu, yN+l —Y2) is independent of ~, we obtain

the following relation

~(~; ~.) = ~(~u, yN+l – y2). (31)

Equation (31) shows that the scattering loss of an

N-layer dielectric waveguide converges with larger N

to a value that depends on the transverse correlation

length Bu and (yN+l – y,), and therefore on the shape

parameter r.

We evaluated the loss for waveguides with N= 8,

N= 20, and N = 60, but there is not an appreciable differ-

ence among them.

In the case of Bu = 0.1 (~/nJ, the loss corresponding

to r = 1 is smaller than that corresponding to r = O by

the factor 1/8.

V. CONCLUSION

We have analyzed the properties of a dielectric wave-

guide with gradual refractive-index distribution in

transverse direction, using the transverse F-matrix.

The field distribution of a fundamental mode, group

delay, and the maximum film thickness of a single-mode

waveguide scarcely depend on the shape of the index

distribution.

Taking the transverse, as well as the longitudinal,

correlation length into account, we have calculated the

scattering loss caused by deviations of the index distri-

bution.

The maximum value of the film thickness in the

single-mode transmission region optimizes the scattering

loss and the energy confinement. The loss of a waveguide

with a gradual index distribution and transverse corre-

lation length Bv = 0.1 (h/tzJ is only 1/8 of the loss of a
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three-layer waveguide. However, in the case of B,
= 100(X/nJ, there is no significant difference between

the former and the latter.

APPENDIX I

“BRACKET” NOTATION

For simplicity of calculation, “bra” and “ket” nota-

tions are used for the characteristic modes of dielectric

waveguide. Definitions are as follows.

I%) = %(y) exp (-@z)

I MB))= @(Y;@ exp (-jDz)

(@. \ = (%(y) exp (–j@nZ))*

(M$ I = (@(Y; 6) =p (–@))*

(On I A I O(p)) = f ‘@n*(y) A@(y; /3) dy exp (j@. – /3)2)
—m

where A is an operater or a function.

APPENDIX II

NORMALIZATION

The normalization is defined using “bracket” notation

(Appendix I).

(1 1 ~@\, for guided modesPam. = & % —
NY) ‘/

(1Pa(yN+, – ?w+l’) = & m) * W’)’
/’

for radiation modes. (32)

Modes are normalized by following normalization

constants

l%

[{
c.= —

2wpP

k12
+{i~

+ ~ Nyt)wyt)(cos 27i~i – 1)
7%2 }

}1
–1/2

+1 @’(yjv+J , for guided modes
TN+JN+I

[{

d 1 k12{N+l }1
—1/2

c(/3) = — — Iqyiv+l) + — ~2(yN+l) ,
2U@ {N+.1 ?N+12

for radiation modes. (33)
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APPENDIX III

EXPANSION COEFFICIENTS

The integration constant is determined from the

initial conditions that only the lowest order guided

mode is incident on imperfect waveguide at z = O, and

that at z = L the waveguide is connected to a perfect

guide so that at z = L there are no waves traveling in

negative z direction. Then integral equations are

. exp (2jbz). (34)

In first-order

approximated

F.{)G(L?)

perturbation the integrand in (341) is

by

- _ /3(k,/n,)2 +: “) .,35,
.

1’111
2@,p (@(B) ; +
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